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Specific character of the dynamics of field-driven structural defects in surface stabilized ferroelectric liquid
crystals with the chevron geometry is investigated under an external alternating electric field. The nature of
dynamic defect modes �relaxation, creep, slide, and switching� and transitions between them is studied using
both the electro-optic measurement technique and direct microscopic observations. The polydispersive shape of
the dielectric response emerging at low frequencies and amplitudes of the field is analytically proved to be a
consequence of viscosity variation inside defects located near the interface between defects and their regular
�chevron� environment. Experimental evidences are given for a strong influence of creep motions of defects on
the dielectric response of the systems. It is also demonstrated that there are different scenarios of the appear-
ance of sliding motions. Switching processes appearing at strong fields are shown to reveal, in general,
complex character and the slide-to-switch transition are argued to be rather blurred.
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I. INTRODUCTION

Field-driven motions of elastic interfaces bounding struc-
tural defects or forming domain walls in weakly disordered
media is of great interest, both for the basic research1–6 and
for technological applications.7–10 In particular, the elabora-
tion of precise methods for dynamic control of patterned
magnetic systems could enable the design of logic devices.
Another challenging problem is the understanding of the dy-
namics of defects in thin ferroelectric liquid crystals, which
is well known, play a basic role in developing high-
resolution display technologies. Although there is a large va-
riety of systems containing mesoscopic elastic interfaces,
their dynamic properties share a common underlying mecha-
nism of an interplay between energy contributions coming
from elastic interactions and random pinning due to the ex-
istence in systems quenched impurities, as well as coming
from thermal and field-induced excitations.11–13 Depending
on temperature, as well as the amplitude and frequency of
the driving field, the weakly disordered systems display dif-
ferent phases reflecting various dynamic states of interfaces.
At nonzero temperatures and oscillating applied fields, these
phases can be characterized by the time dependence of the
velocity v�t� of these interfaces or their moving fragments. In
the case of the low-energy excitation phase, i.e., the relax-
ation phase, the long-time average velocity v̄= �v�t�� is zero
and the velocity does not exhibit hysteresis. The creep phase
emerging at higher energy excitations is associated with mo-
tions of interfaces still at the average velocity v̄=0 but ex-
hibiting hysteresis of v�t�. Such thermally activated and
field-driven motions can be thought as chaotic locally con-
fined shifts of interfaces.11 As the activation energy in-
creases, the systems pass into the slide phase, in which the
motion of interfaces is nonlocal �ergodic� with v̄�0.14 Per-
haps the most known model systems displaying complex dy-
namics of interfaces are ferroics.6,12,15 In these systems, the
role of interfaces play domain walls separating regions of
opposite magnetization or electric polarization. Any motions
of such domain walls, including oscillations of fragments of
the walls in the relaxation phase, are a consequence of

switching of magnetic or electric moments adjacent to the
walls.

Structural defects occurring in thin, surface stabilized
ferroelectric liquid crystals �SSFLCs� with the chevron ge-
ometry are not simple geometric hypersurfaces, such as do-
main walls, but they are rather physical objects with narrow
but finite widths.16,17 These defects called zigzag walls spon-
taneously form regions with unfolded smectic layer structure
of the bookshelf type trapped in regular regions with the
chevron structure �organized in folded smectic-C layers�.18

There are two kinds of the zigzag walls, i.e., thin and thick
walls reflecting two possible ways in which the walls can
mediate between regions of opposite chevron directions. In
the chevron plane �perpendicular to the smectic layer plane�,
the thin walls can schematically be presented as
¯������¯ ������¯, while, much broader thick walls can be
depicted by ���¯ �������¯ �������¯ ���. Generally, thick walls
run preferentially along the smectic layers turning at their
ends to thin walls oriented nearly perpendicular to the smec-
tic layers. Since the bookshelf structure is unstable in tem-
peratures for which the chevron-ordering displays stability,
thick walls are more field and/or temperature sensitive than
the thin walls. This has distinct implications for the dynamics
of thick walls leading to a strong pinning of these walls by
their thin counterparts.19,20 In contrast to relaxation processes
at weak fields in ferroic systems, in which such processes
rely on local switching phenomena within fragments of do-
main walls, low-energy relaxation excitations in chevron SS-
FLCs are connected with small molecule reorientations in
the whole systems without any changes of defect morphol-
ogy. Also in contradistinction to shift motions of domain
walls in ferroics, displacements of zigzag walls �at higher
applied fields� do not result from bistable switching of elec-
tric moments, but rather are a consequence of the transfor-
mation of bookshelf �unfolded� smectic layers into chevron
�folded� layers or conversely. Evidently, in such restructuring
processes, entire smectic layers at borders between defects
and their environment can only participate, and not any frag-
ments of these layers. Although the zigzag walls constitute
essentially three-dimensional �3D� objects, their shift mo-
tions resembles displacements of two-dimensional objects in
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that that the motions of borders of zigzag walls are strongly
correlated.19,20

In this paper, results of both experimental and theoretical
investigations of chevroned samples SSFLCs are reported
with the aim of explaining the effect of field-induced excita-
tions of the zigzag defects on the dynamic behavior of the
considered systems over all their dynamic phases. It is clear
that mechanisms responsible for the appearance of dynamic
phases in defected SSFLCs are different and, in general,
more complex than those occurring in solid-state media with
domain structures. Nevertheless, results presented here yield
insight into dynamic phase transitions and properties of dy-
namic phases in disordered systems. In particular, it is shown
that processes of sliding of defect walls can convert systems
into different dynamic states. As an experimental method, the
electro-optic technique supported by microscopic observa-
tions was applied. This technique enabled one to register the
electro-optic response of small fragments of samples and
thereby enabled one to analyze the contribution to the
electro-optic response coming from collective motions of
molecules within the zigzag defects. The chosen systems
were thin samples of ferroelectric liquid-crystalline mixtures:
Felix 15–100 and Felix 17–100. Molecules forming these
mixtures display large shape anisotropy, low symmetry, and
strong polarity. In thin cells, the molecules are preferentially
arranged in liquidlike �smectic� layers and the whole samples
exhibit ferroelectric ordering under surface interactions.3 At
sufficiently high temperatures and/or in cases of cells of suf-
ficiently small thicknesses, the smectic layers are oriented
perpendicularly to boundary plates. However, when the cell
thickness is not very small, the smectic layers narrow and
spontaneously bend at a rather small angle to boundary
plates as temperature is lowered. As a result, a chevron struc-
ture of smectic layers arise which, typically, is not perfect but
contains zigzag defects.

II. RELAXATION MOTIONS OF DEFECTS

Molecular motions studied here were induced by applying
normally to boundary plates of samples a sinusoidally oscil-
lating voltage V�t�=U sin��t� where U denotes the rms am-
plitude and �=2�f with f being the frequency. As it is well
known, collective rotations of molecules driven by weak
voltages can easily be detected by measuring the electro-
optic response of liquid-crystal systems. In addition to con-
tributions due to collective rotations of molecules within
chevron layers, the dispersion of the dielectric permittivity of
SSFLCs exhibits a distinct broadband contribution at weak,
relatively low-frequency voltages.19 This is exemplified in
Fig. 1, where a contour map showing the U and f depen-
dences of an experimentally determined dielectric loss per-
mittivity �� is drawn in the case of a cell filled with the Felix
15–100 mixture. For this system, the low-frequency band is
visible for U�0.5 V, covering roughly the frequency range
10 Hz� f �1 kHz. It has been suggested that such a low-
frequency contribution to the dielectric spectra ���� is due to
oscillatory motions of molecules within zigzag defects.20,21

This suggestion can be supported by analyzing electro-optic
response recorded for particular sample fragments. The U

dependence of �� measured by illuminating very small areas
of a sample, the one containing a thick wall and the other
having entirely undefected chevron structure, is presented in
Fig. 2. It is seen from the figure that, at weak voltages, a
relatively low-frequency band occurs in the presence of zig-
zag defects, and does not appear when these defects are ab-
sent. Further arguments for special importance of zigzag
walls to dynamic properties of chevron SSFLCs are afforded
by microscopic observations. An exemplary micrograph of
zigzag walls at zero voltage is shown in Fig. 3 where strips
of different colors inside these walls are easily visible. Such
diversity of colors of different regions within defect walls is
associated with an inhomogeneity of the distribution of the
tilt angle of molecules over zigzag walls �especially over
thick walls� caused by the influence of borders of the walls.
Consequently, one can expect that borders of the zigzag
walls strongly disturb field-driven collective rotations of
molecules inside zigzag walls affecting the electro-optic re-
sponse of whole systems. As already been shown,19 dielectric

FIG. 1. �Color online� Semilog plot of the contour graph of the
dielectric loss ���f ,U� determined experimentally at the tempera-
ture T=50 °C, for a cell of the thickness 5 �m, containing the
Felix 15–100 mixture. The solid red line indicates the location of a
projection of an edge line of ���f ,U� on the U− f plane
�see Sec. III�.

FIG. 2. �Color online� The dielectric loss �� vs U registered
�filled circles� for a Felix 15–100 mixture sample of the thickness
5 �m at T=50 °C and at f =70 �1�, 110 �2�, 150 �3�, 220 �4�, 320
�5�, 420 �6�, and 520 Hz �7�. The measurement data were performed
for sample fragments with zigzag walls �a� and without these de-
fects �b�.
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spectra of chevron samples contain a broad low-frequency
component. On the other hand, dielectric spectra of regular
�undefected� SSFLCs with the chevron structure have been
determined theoretically. It proves that the subtraction from
experimental spectra ���� corresponding dielectric spectra
derived theoretically has yielded a pronounced frequency de-
pendence of the resulting extracted spectra over a rather wide
range of relatively low frequencies.19 These extracted spectra
have been well fitted with spectra determined for Debye pro-
cesses with a distribution g�����−2 of the relaxation time �.

In order to verify the hypothesis that dielectric spectra
corresponding to relaxation motions of molecules within zig-
zag walls can be described by spectra of Debye processes
with continuously distributed relaxation times, consider the
equation of motion molecules in the chevron plane. The
sample geometry is taken here to be identical to that of Refs.
19 and 20, where the smectic layers are parallel to the �X-Z�
plane, the boundary plates of the sample are perpendicular to
X axis and the origin of the coordinate frame is placed in the
chevron interface plane at the border between the chevron
region and a given thick wall. For simplicity, the wall is
assumed to spread out along the Z axis. The rotation motion
of molecules within the wall can be investigated in the con-
tinuous approximation by analyzing field-induced fluctua-
tions of the azimuthal angle �=��x ,z�, characterizing the
orientation of the c director within planes parallel to the
�X-Y� plane both along the X and Z axes. Since borders of
samples used in experiments have rigidly been glued and
distances between boundary plates have been kept constant
by hard spacers, piezoelectric effects22 have not been ob-
served. Therefore, in the description of the studied systems,
these effects can be neglected especially in cases of low ap-
plied fields. Consequently, in the presence of an electric field,
applied along the X axis and sinusoidally alternating with the
frequency �, the rotational motion of molecules forming de-
fects is described by the equation

M
�2�

�z2 + K
�2�

�x2 − 	
��

�t
= G sin � cos �t , �1�

where M and K�M 
K� are respectively interlayer and intra-
layer twist interactions, 	 is the rotational viscosity, and G
= PsU /d with Ps denoting the local polarization and with d

being the cell thickness. The surface anchoring interactions
are assumed here to be strong compared with the K coupling
and the sample is assumed to be very thin. Under these as-
sumptions, the dependence of � on x is weak for low volt-
ages and the rotational viscosity can then be treated as inde-
pendent of x. However, the borders between chevron and
bookshelf �defect� layers can affect the azimuthal angle
through interlayer couplings, even far away from the bound-
aries �as seen in Fig. 3�. Accordingly, the rotational viscosity
cannot be treated within defect walls as a constant, i.e., 	
=	�z�. The resulting dependences of � and thereby 	 on z
will be assumed here to persist through a distance L from the
wall border less than half a width of a defect wall. In general,
the borders between defect walls and their chevroned sur-
roundings have rather complex structures.3 However, the
slope of chevron smectic layers �in the chevron plane� is
usually small and the borders can be treated as simple con-
nection of chevron and bookshelf smectic layers �in the case
of thick walls such as connection can schematically be pre-
sented as ��¯ ����¯ ���. Then, the solution of Eq. �1� can be
written for low voltages and for 0�z�L in the form

��x,z;t� = g�x,z� − B�x,z�sin�g�x,z��cos � cos��t − ��
�2�

with

g�x,z� = �0 + bx + c	1 −
z

L

 , �3�

B�x,z� =
G

Kb2 + MH�x,z�
, �4�

H�x,z� = 	 c

L

2

+
2c

L
cot�g�x,z��h−1 �

�z
h

− h−1 �2

�z2h , �5�

where h= �cos ��2 and the phase �=��x ,z� is given by the
relation

tan ��x,z� = B�x,z�	�z��/G . �6�

The constants �0 and b can be determined using boundary
conditions for a given 0�z�L and U=0. For z=L, one has
�0= ��b+�t� /2 and b= ��t−�b� /d, where �b and �t are
zero-field values which � takes for z=L at top and bottom
sample plates, respectively. In turn, �b and �t are related to
surface anchoring energy strengths23,24 through the following
implicit equation

	1�sin�2�b� + sin�2�t�� = 	2�sin �t − sin �b� , �7�

where 	1 and 	2 are respectively the nonpolar and polar sur-
face energy strengths. Clearly, the factor c characterizing the
strength of inhomogeneity of the molecular orientation in the
z direction depends on the interlayer coupling M.

The local relaxation time is obtained using Eqs. �4�–�6�

FIG. 3. �Color online� �a� Micrograph of zigzag walls in a Felix
17–100 mixture sample of the thickness 4.63 �m taken at
T=50 °C and U=0. �b� The same micrograph with enhanced con-
trast. The effect of the variation of the color across wall strips is a
clear demonstration of an alternation of the molecular tilt angle
across the walls, especially across the thick walls.
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��x,z� =
	�z�

Kb2 + MH�x,z�
. �8�

This relation indicates that the influence of borders of the
zigzag walls on the rotational motion of molecules forming
zigzag walls leads to the space dependence of local relax-
ation time both in the z and x directions. However, since K

M, ��x ,z� can be approximated by

��z� �
	�z�
Kb2 . �9�

Within this approximation, � is identical inside each smectic
layer but being dependent on z, � still have a local character.
To determine z dependences of � and 	, let us consider the
field-induced deviation of ��x ,z , t� from its zero-field form
averaged along the x direction and during time period of one
cycle of the electric field ��=������2�x,t, where ��
=��x ,z , t�−g�x ,z� and �¯ �x,t= f
0

1/f�d−1
−d/2
d/2

¯dx�dt. Using
Eqs. �2� and �3�, one obtains for bd
1 and small enough �c�

�� =
1

2
B̃ sin2 �0 cos ��z� , �10�

where B̃=G /Kb2 and ��z� is given by the relation

tan ��z� = B̃	�z��/G . �11�

In the case of small �c�, �� may be estimated as

�� � 1 − a + a
z

����
, �12�

where a is a constant such that 0�a�1, and ���� is the
distance through which the influence of the wall border on
the field-induced contribution to the azimuthal angle is sig-
nificant. �For a given voltage amplitude, � depends only on
�.� Applying Eqs. �10�–�12�, one can easily find the func-
tions ��z� and 	�z�. Since the main low-frequency contribu-
tions to the dielectric spectra are expected to come from
defect regions close to their borders with chevron smectic
layers, these functions can be approximated for sufficiently
large a and ���z��1 by

��z� �
�1

1 − a + a z
����

, �13�

and

	�z� �
	1

�1
��z� , �14�

where �1 and 	1 are the bulk values which ��z� and 	�z� take,
respectively, for z�����, i.e., in bookshelf regions that are
not influenced by the borders.

In order to calculate the dielectric response due to relax-
ation processes within zigzag walls, let us make the same
assumptions that led to Eq. �13�, i.e., K
M and �c�
1. Un-
der these conditions

��x,z;t� = �0 + bx − B̃ sin��0 + bx�cos ��z�cos��t − ��z�� ,

�15�

where ��z� is given by tan ��z�=���z�. Using this relation
and assuming that bd
1 yields the local �z dependent� con-
tribution to the dielectric spectra owing to molecular rota-
tions of molecules within a zigzag wall at the distance z
����� from the border of the wall. As can be expected,
these spectra have the Debye-type form

�����;z� =
���0�

1 + i���z�
�16�

with ��0�= B̃d2 sin2 �0 /U. Total dielectric spectra associated
with molecules placed inside defects over the distance ����
from borders of the defects can be expressed as

������ � �
0

����

�����,z�dz . �17�

Note that the proportionality constant between ������ and
the integral of the above relation should involve the density
of defects. According to Eq. �13�, one has

������ �
�����2

a
�

�1

�2 d�

�2�1 + i���
, �18�

where �2=�1 / �1−a� is the value of ��z� at z=0. The fre-
quency dependence of ���� �keeping the voltage amplitude
constant� can be determined by balancing the elastic and the
viscous �dissipation� energies as well as the energy of inter-
actions of molecules with the external electric field. This
leads to the following relation for time averages of the re-
spective energy densities

�M�zz�̇ − 	�̇2�z,x,t = �G sin��0 + bx�cos��t��̇�z,x,t,

�19�

where �zz= �2

�z2 ��x ,z , t�, �̇= �
�t��x ,z , t�, and the average

�¯ �z,x,t=�−1���
0
�����¯ �x,tdz. Note that the elastic energy

associated with the interaction K does not give any contribu-
tion to Eq. �19� as ���̇�t=0. Calculating the averages in Eq.
�19� with the use of Eqs. �13�–�15� and under the assumption
that bd
1 yields for ��1�1

���� �
�

�
, �20�

where

� = aB̃� 2M

�1�	1 + G�1�
. �21�

Thus, the contribution of field-stimulated rotational relax-
ation motions of molecules within defects to the dielectric
response of a chevroned sample can approximately be de-
scribed by a spectrum of Debye processes with continuously
distributed relaxation times. Then,
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������ = �
�1

�2

���,��
d�

1 + i��
, �22�

with the distribution of relaxation times

���,�� �
1

��2 . �23�

This analytical expression for the distribution of relaxation
times reproduces the earlier result deduced from experimen-
tal data.19 The limit relaxation times �1 and �2 given in Ref.
19 have been adjusted by fitting ������ of the form �22� to
measurement data on dielectric relaxation in samples of vari-
ous thicknesses. It is remarkable that the relaxation time �1 in
bulk-bookshelf smectic layers forming defects is nearly half
of the relaxation time �max=1 /�max, where �max is the field
frequency at which collective molecular rotations within
bulk-chevron smectic layers give the maximal contribution
to the dielectric loss spectra.19 This is in accordance with
both theoretical and experimental results that the relaxation
time corresponding to collective rotations in liquid crystals
in thin cells is proportional to the cell thickness.19 Note that
the thickness �along the Z axis� of bookshelf smectic layers
is nearly twice as large as the thickness of each of the chev-
ron slabs �the chevron tilt angle is usually small�.

The above results show the importance of relaxation pro-
cesses within defect walls �especially inside thick zigzag
walls� for the electro-optic response of SSFLCs at low fre-
quencies of the driving field. It is clear that the chevron
environment of defect walls being perturbed by these defects
also gives a contribution to low-frequency dielectric spectra.
However, the bookshelf smectic layers forming defects as
being a remnant of the high-temperature phase are much less
stable and thereby much more field-sensitive than the chev-
ron smectic layers. Therefore, the influence of relaxational
processes within chevron smectic layers located near defect
borders on low-frequency spectra is considerably weaker
than similar processes in defect walls.

III. CREEP DYNAMICS

Field-induced rotational excitations of molecules within
zigzag walls become strongly nonlinear in the regime of rela-
tively low frequencies when the voltage amplitude ap-
proaches from below a frequency-dependent threshold Uc�f�
as seen in Fig. 1. The growth of the dielectric loss in this
frequency regime for increasing U, distinctly exemplified in
Figs. 1 and 4, indicates that the molecular excitations still
remain collective as U↗Uc�f�, although they become in-
creasingly nonlinear. As soon as U exceeds for a given f , the
threshold Uc�f�, the dielectric loss abruptly diminishes �see
Fig. 4�. This suggests that rotations of molecules forming
defect walls loss their collective character for U�Uc�f� �and
for relatively small f� leading to the destabilization of smec-
tic layers at borders of the walls and causing viscous creep
motions of these walls. Such space confined wall motions are
associated with sequences of local restructuring of smectic
layers, which can schematically be represented as ��→ ��
and/or ��→��. Indeed, the creep motions of thick zigzag walls

have been observed by means of the polarizing optical mi-
croscope at somewhat greater values of U than Uc�f�, when
these motions irregularly spread over sufficiently large
sample regions �much less, however, than whole
samples�.19,20 These observations have given an evidence
that the spatial confinement of creeping of the thick walls is
a result of a strong pinning of their ends by thin zigzag walls.
Additionally, the roughening of borders of thick zigzag walls
have been registered �at least in macroscopically large length
scales� and a strong correlation between motions of both bor-
ders of each of the thick walls has been noticed. The consis-
tence of irregular motions �roughening processes� of both
wall borders is a sign of the great importance of interlayer
interactions within thick walls to their creep dynamics.

The dynamic transition between relaxational and creep
dynamic phase is plainly visible in the occurrence of a nar-
row convex edge of the surface describing the dependence of
the dielectric loss on U and f as shown in Fig. 4. The pro-
jection of this edge on the U− f plane defines for a range of
rather low frequencies, a critical line Uc�f� �the red line ex-
emplified in Fig. 1�. Above the upper cutoff frequency, the
oscillations of applied voltage are too fast in order to creep
motions could be excited. In turn, at very low frequencies
�typically below 10 Hz�, even the electro-optic technique is
unable to detect slow creep motions of defect walls in a
consequence of strong perturbations of the dielectric spectra
by ionic currents and by electrode blocking processes.21,25,26

For several samples of different thicknesses and filled with
different liquid-crystal mixtures, the critical line has been
shown to satisfy a scaling relationship, Uc�f�� f� with �
=0.5�0.05.20 The question whether the critical index � is
universal �for SSFLCs with the chevron structure� remains,
however, open. It should be noted that the discussed dynamic
phase transition is also reflected in the U dependence of the
dynamical hysteresis-loop area experimentally determined
for relatively low frequencies.20 As a consequence, one re-
covers the scaling form of Uc�f�.

The mechanisms underlying relaxation and viscous creep
motions in chevroned liquid crystals are very different.
While the first kind of motion consists in molecular oscilla-
tory rotations �in both chevron and bookshelf smectic layers�

FIG. 4. �Color online� Dependence of the dielectric loss �� on U
and f experimentally determined at T=50 °C for a sample of the
thickness 4.63 �m, filled with the Felix 17–100 mixture.
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without changing the structure of samples, the second type of
motion relies on restructuring of chevron smectic layers into
bookshelf ones or conversely. This is in contrast to similar
transitions occurring in solid-state multidomain systems in
which segmental relaxation excitations and creep motions of
domain walls both consist in local switching processes.
Therefore, the relaxation-to-creep transition influences the
dielectric response spectra much more distinctly for the
chevron SSFLCs than for the solid-state systems.6,12

As the voltage amplitude continuously increases within
the creep regime, thick zigzag walls gradually lose their sta-
bility and transform themselves into creeping thin zigzag
walls. Direct observations have indicated that this field-
provoked conversion of the thick walls into the thin ones is
accomplished by progressive roughening of the thick walls.
During such a process, both interfaces bounding a given
thick wall consistently evolve from rather smooth surfaces to
very rugged surfaces.20 As a result, interfacial instabilities
lead to an emergence from each thick wall growing and si-
multaneously narrowing kinked stripes, which ultimately
constitute �3D� thin walls immediately undergoing localized
creep motions.

IV. SLIDE MOTIONS

Sliding viscous motions of zigzag walls �without crossing
each other� appear at rather high applied voltages as their
amplitude exceeds a frequency-dependent threshold. Accord-
ing to the scenario found in Felix 15–100 mixture systems,
after the degradation of thick walls, the motion of thin walls
changes under the growing voltage from localized creeping
to large-scale �ergodic� slidings, which ultimately cause the
walls to move away from samples.19 Since, in the sliding
regime, the thin walls move across cells and vanish at cell
boundaries, the density of the walls decreases in time.

It turns out, however, that yet another scenario of sliding
motions takes place, e.g., in the case of thin samples contain-
ing the Felix 17–100 mixture. In these samples, sliding
movements of thin walls are also preceded by a transforma-
tion of thick walls into thin walls but the latter are not suc-
cessively swept off samples, even for voltage amplitudes
much greater than the sliding threshold value. Furthermore,
the thin walls invade chevron regions when the voltage am-
plitude exceeds a frequency-dependent threshold value until
the whole samples are fulfilled by the walls. To illustrate this
process, microphotographs of a fragment of a sample filled
with the Felix 17–100 mixture have been presented in Fig. 5,
where thin walls at different creep dynamic states �a�, �b�,
and �c� as well as at the sliding invasion process �d� are
shown. Such an invasion process resembles both viscous fin-
gering with side branching �especially, the field-induced fin-
gering observed in antiferroelectric liquid crystals�27 and
sliding motions. However, in contrast to invading viscous
fingers occurring in antiferroelectric liquid crystals, defects
migrating into chevron regions of considered systems are not
moving fronts of wedgelike domains but remain thin walls
with strongly correlated bounding interfaces. Thus, large-
scale invading movements of thin zigzag walls can be treated
as invading slide motions.

Both types of slide wall motions registered in different
SSFLCs of the chevron structure at strong enough driving
fields, i.e., rather smooth movements that lead to the disap-
pearance of the walls after reaching system boundaries and
invasion movements of walls over whole samples involve
restructuring and rearrangement phenomena at interfaces be-
tween bookshelf and chevron smectic layers. At strong fields,
these phenomena have to a great extent noncollective char-
acter. That is the reason why the considered sliding motions
similarly to creep motions at high fields do not yield appre-
ciable contributions to dielectric response spectra �see Fig.
1�, in order to these motions could experimentally be regis-
tered using the electro-optic technique. Consequently, the
field-induced transition between creep and sliding dynamic
phases is not reflected in electro-optic response spectra as
well. One can infer, however, that this transition is smeared
at nonzero temperatures similarly to the creep-to-slide tran-
sition in various disordered media.4 This can mainly origi-
nate in inhomogeneities of the layer anchoring at cell plates.

The occurrence of sliding motions of a given kind in
chevron SSFLCs is determined by an interplay of the rota-
tional viscosity as well as intralayer and interlayer twist in-
teractions within defect walls on the one hand and within
chevron system regions on the other hand. In particular, the
invading slide motions are expected to appear when the ro-
tational viscosity of molecules forming zigzag walls is con-
siderably smaller than the viscosity of molecules in chevron
smectic layers. It is remarkable that the slide motions of both
types have been observed in a wide range of voltage frequen-
cies including low frequencies �for appropriately large volt-
age amplitudes�.

V. SWITCHING DYNAMIC MODES

Field-induced switching between bistable orientational
states of molecules in chevron and bookshelf smectic layers
proceeds in different ways.24,28 Hence, the polarization

FIG. 5. �Color online� Microphotographs of thin walls in a cell
of the thickness 4.63 �m filled with the Felix 17–100 mixture at
T=30 °C, f =1000 Hz, and different values of U: 8 �a�, 12 �b�, 16
�c�, and 18 V �d�. The micrographs �a�, �b�, and �c� were taken in
the regime of the thin-wall creeping, while the micrograph �d� was
taken slightly above the sliding threshold value of the voltage am-
plitude, during the process of the slide invasion of defect walls.
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switching processes within regular and defect regions of the
considered systems should, in general, begin to occur at dif-
ferent threshold values of the voltage amplitude �at a given
voltage frequency�. Generally, these processes are expected
to appear at high voltages �much higher that the sliding
threshold�. However, in that case, the effect of straightening
of chevron layers �diminishing the angle of the tilt of the
chevron layers� is very strong3 and then the difference in
structure between chevron and bookshelf layers vanishes.
Consequently at very high voltages, the considered systems
can approximately be treated as homogeneous �undefected�
bookshelf systems. Then, taking into account nonlinear ef-
fects, important at high voltages, e.g., depolarization,29,30

and/or nonpolar anchoring of smectic layers at boundary
sample plates,31 one gets the following equation describing
rotational motions of molecules in the considered systems
under strong alternating electric field30

K
�2�

�x2 − 	
��

�t
= G sin ��cos �t − G� cos �� , �24�

where G� is a constant. As it is known, this equation has a
soliton-type solution.30 Accordingly, switching processes in
SSFLCs can be performed through oscillatory motions of
orientational kinks on the distance ��1 /� �in the direction
perpendicular to sample plates� with the velocity v
=v0 cos �t, where v0 is a constant. Such solitonlike excita-
tions are possible for sufficiently large voltage frequencies
when the sample thickness d is much greater than �. These
excitations have experimentally been registered by measur-
ing the electro-optic response of ultrathin samples with the
bookshelf structure at large voltage frequencies.32 It has also
been shown that the switching of polarization of these
samples as a whole takes place during each cycle of the
driving voltage in the regime of low frequencies and very
high voltage amplitudes �greater than those at which soliton
waves begin to be excited�.32

To study the switching dynamics of the considered sys-
tems, their electro-optic response has been measured over a
wide range of voltage amplitudes. Results obtained for the
dielectric loss spectra are illustrated in Fig. 6. These spectra
exhibit a distinct high-frequency band with the peak fre-

quency located between 5 and 10 KHz, for 10 V�U
�100 V. Such a high-frequency band of the electro-optic
response occurring at large applied voltages can be affected
by solitary switching waves.32 Another broadband appears in
�� at low frequencies, when U is sufficiently large. In Fig. 6,
the low-frequency band is visible for U�50 V, within the
frequency range 10 Hz� f �500 Hz. Clearly, this fre-
quency band of �� occurring at very high voltages can be
attributed to complete polarization switching processes, each
of which takes place during one voltage cycle.32 It is remark-
able that the low-frequency band shown in Fig. 6 is not very
pronounced and, even, reveals a tendency to vanish as U
grows. This can be explained that strong electrohydrody-
namic convection appearing at very high voltages strongly
disturbs coherent rotational molecular motions forced by ap-
plied voltages.33 It should be noted that electroconvection
patterns has really been observed in the studied samples
within the regime of small frequencies and large voltage am-
plitudes �U�50 V�.

The transition from sliding to switching dynamic modes
in chevron SSFLCs as U increases is followed by processes
of straightening of chevroned smectic layers. Thus, the dif-
ference between zigzag walls and their chevroned environ-
ment is very subtle at large U and this transition has not a
sharp character. Since the sliding motions of zigzag walls
appear within wide frequency ranges �these defect motions
were observed in Felix 17–100 mixture samples even above
5 kHz�, the transition to the switching dynamic mode can
proceed in two different manners depending on the fre-
quency of the driving voltage. For low frequencies, the tran-
sition to the complete switching mode is expected while at
sufficiently high frequencies, the appearance of the soliton-
like dynamic mode is more probable.

VI. CONCLUSIONS

Dynamic modes of zigzag defect walls in chevron SS-
FLCs have been shown to differ essentially from those stud-
ied in the context of domain walls in ferroic systems. Al-
though the relaxation response spectra induced by weak
fields have polydispersive character in both types of systems,
they have very different origin. While the low-frequency re-
laxational dynamic mode in ferroics is associated with seg-
mental oscillations of domain walls �on the length scales less
than the sample thickness�, the low-frequency relaxation
band of the response spectra in chevron SSFLCs appear to be
attributed to small rotational motions of molecules forming
zigzag defects. In particular, it has been argued that an intri-
cate low-frequency contribution to the dielectric response of
the studied systems on weak applied voltages results from
the inhomogeneity of rotational viscosity inside defect walls,
due to the influence of wall borders on the dynamic behavior
of molecules forming the defect walls. The response of zig-
zag walls theoretically obtained for the relaxation regimen
has been proved to be consistent with earlier experimental
data. In contrast to result obtained for ferroic systems, the
relaxation spectra of the zigzag walls cannot be described by
a broadened Debye-type function with an averaged relax-
ation time. The transition between relaxation and creep

FIG. 6. �Color online� Dielectric-loss spectra experimentally ob-
tained �filled circles� for a Felix 15–100 mixture sample of the
thickness 5 �m at T=50 °C and at different voltage amplitudes: 10
�1�, 60 �2�, 80 �3�, and 100 V �4�.
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phases has been found to be sharp as the voltage amplitude
grows. Direct microscopic observations have indicated that
creep motions of the zigzag walls proceed in two stages as
the voltage amplitude increases. At the first stage, creep mo-
tions of thick walls are excited. These motions are localized,
owing to the strong pinning of the ends of thick walls by the
thin walls. At the second stage, the thick walls are trans-
formed into the thin ones, which simultaneously start to
creep. In addition to sliding dynamic mode involving delo-
calized defect motions without increasing in time the space
average of wall lengths, a new type of sliding movements the
so-called invading slide mode has been observed. This dy-
namic mode is associated with the elongation and side
branching of thin zigzag walls. Slide motions of both the
kinds, similarly to creep motions, consist in restructuring
processes of chevron smectic layers into bookshelf layers, or
conversely. Since these processes have strongly noncollec-
tive character at high voltages, the creep-to-slide dynamic

transition is not reflected in the electro-optic response spectra
of SSFLCs. It has been shown that depending on the fre-
quency of the driving voltage, the switching phenomena �at
very high voltages� rely on the propagation of solitary waves
or on complete switching �of the entire sample polarization�
during each voltage cycle. Consequently, the mechanism of
the transition between sliding and switching dynamic modes
is, in general, different in different frequency regimes. Re-
sults presented in this paper show that, in spite of obvious
analogies, dynamic phases, and transitions between them
have essentially different character in cases of SSFLCs and
ferroics.
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